

Commercial High-Purity Water Systems & Applications

Brian Soderholm

Brian.Soderholm@watercontrolinc.com (763) 227-6499

OVERVIEW

Measuring purity

- Applications and standards
- Production methods
 - 🔊 Reverse Osmosis
 - 🔊 Deionization
 - Electrodeionization
 - 🗈 Distillation
- Pure water delivery systems
- Accessories for ultrapure
- Packaged systems
- System sizing/selection

MEASURING PURITY LEVELS

- "Impurities" = suspended solids, dissolved solids, microorganisms, organics, gases
 - Levels of dissolved solids measured in units:
 - Megohm-cm of resistivity
 - Micromhos/cm [microsiemens/cm] of conductivity
 - PPM (mg/l) of Total Dissolved Solids)
 - (approx. micromhos X 0.67)

Conductivity	Resistivity
0.01 uS	100 MΩ
0.055 uS	18.0 MΩ
0.1 uS	10 MΩ
1 uS	1 MΩ
10 uS	0.1 MΩ
100 uS	0.01 MΩ
1 mS	1 kΩ

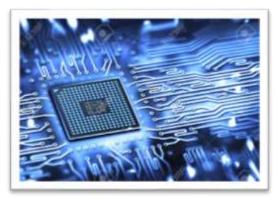
GENERAL LABORATORY AND CHEMISTRY APPLICATIONS

ASTM D-1193

Parameter	Type I	Type II	Type III	Type IV
Resistivity @25° C (megohm-cm)	18	1	4	0.2
Conductivity @25° C (μS/cm)	0.056	1	0.25	5
pH @25°C	N/A	N/A	N/A	5.0 - 8.0
Total Organic Carbon (TOC) (μg/l)	50	50	200	No Limit
Sodium (µg/l)	1	5	10	50
Chloride (µg/l)	1	5	10	50
Silica (µg/l)	3	3	500	No Limit
*Water suitable for use in chemical analyses				

Parameter	Type A	Туре В	Type C
Max hetotrophic plate count (CFU/ml)	0.01	0.1	10
Endotoxin (EU/ml)	0.03	0.25	N/A
**May be specified in conjunction with Type I, II,			
III, or IV Reagent water, as needed			

Optional Microbiological Limits**


ASTM Reagent Water Types *

SEMICONDUCTOR MANUFACTURING

ASTM D5127

ASTM Recommended Semiconductor Rinsewater Quality Requirements

	Type E 1	Type E 1.1	Type E 1.2
Parameter			
Linewidth (μm)	1.0-0.5	0.35-0.25	0.18-0.09
Resistivity @ 25°C (megohm-cm)	18.1	18.2	18.2
Total Organic Carbon (TOC) (μg/l)	5	2	1
Dissolved Oxygen (µg/l)	25	10	3
Residue after evaporation (µg/I)	1	0.5	0.1

PHARMACEUTICAL

USP-NF 24

USP24 Water Quality Standards (Pharmaceutical Industry)

	USP		
	Purified*	USP Sterile**	USP WFI***
Parameter			
Conductivity (μS/cm)	1.3	N/A	1.3
рН	5.0-7.0	5.0-7.0	5.0-7.0
Chloride (mg/l)	0.5	0.5	0.5
Sulfate (mg/l)	1	1	1
Ammonia (mg/l)	0.03	0.03	0.03
Calcium (mg/l)	1	1	1
Carbon dioxide (mg/l)	5	5	5
Total organic carbon (TOC)			
(µg/l)	500	N/A	500
		pass sterility	
Bacteria (CFU/ml)	100	test	0.1
Endotoxin (EU/ml)	0.25	0.25	0.25

*Purified water for

compounding

**Sterile water for irrigation

***Water for injection

HEMODIALYSIS

AAMI RD62

AAMI Water for Hemodialysis Standard

Parameter	Limit (mg/l)		
Aluminum	0.01		
Chloramine	0.1		
Chlorine	0.5		
Total Chlorine	0.1		
Copper	0.1		
Fluoride	0.2		
Lead	0.005		
Nitrate	2		
Sulfate	100		
Zinc	0.1		
Antimony	0.006		
Arsenic	0.005		
Barium	0.1		
Beryllium	0.0004		
Cadmium	0.001		
Chromium	0.014		
Mercury	0.0002		
Selenium	0.09		
Silver	0.005		
Thallium	0.002		
Bacteria	<100 CFU/ml (ANSI)		
Endotoxin	<0.25 EU/ml		

MEDICAL FACILITIES

CLSI Reagent Water Specification GP40

Clinical & Laboratory Standards Institute (CLSI): Reagent Water Specification

Parameter	Limit
Resistivity @25°C (megohm-cm)	> 10
Total organic carbon (TOC) (μg/l)	< 500
Particles (max micron filtration)	<u>< 0.2</u>
Bacteria (CFU/ml)	< 10

CLSI Water For Autoclaves*

Parameter	
Resistivity @ 25°C (megohm-cm)	0.1
Silica (mg/l)	1

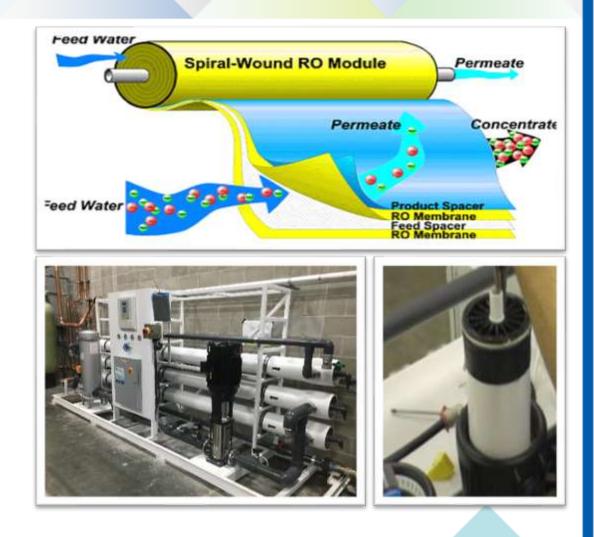
*formerly known as NCCLS/CLSI Type III Water

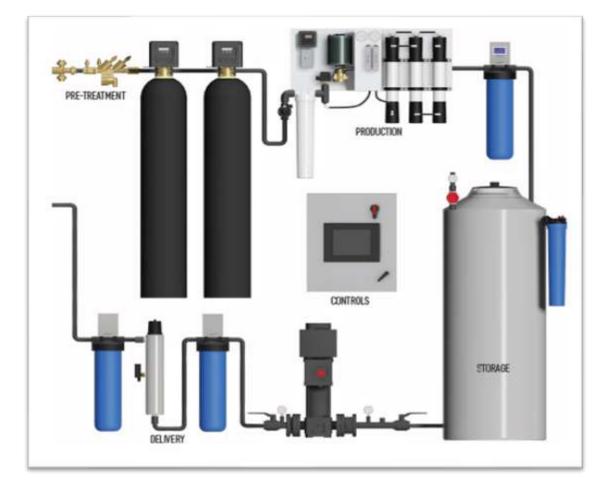
HVAC FEEDWATER

- Humidification, boilers, steam, etc.
- Meet manufacturer specifications
- Typically <15 μS/cm conductivity (approx. 10ppm)</p>
- *Clean Steam" is application and equipment-dependent
 - Condensate typically USP WFI-grade if for pharma

DRINKING WATER

Must not exceed USEPA Maximum Contaminant Level (MCL) guidelines





NOLINY

THE MOVEMENT OF A SOLVENT THROUGH A SEMIPERMEABLE MEMBRANE FROM AN AREA OF LOW CONCENTRATION TO AN AREA OF HIGHER CONCENTRATION.

- 96%-99% NaCl Rejection
- 🏞 120 180 psi
- 50%-75% recovery
- Rated at 77°F feed temperature
- Chlorine/oxidantsensitive
- Many variations

THERMOSTATIC MIXING VALVE

- (Pre-RO unit) (Optional)
- RO units operating range: 40° 105°
- Typical temp: 77°F
 - At 50°: 42% production loss
 - At 61°: 27% production loss
 - At 86°: 16% production increase
- Hot and cold water supplies required
- Low-energy membranes may reduce need

REDUCED PRESSURE ZONE BACKFLOW ASSEMBLY (RPZ)

- Prevents contamination of domestic water
- Air gap funnel with pipe to drain
- Usually code-mandated at pure water system feed (pre-RO)

WATER SOFTENER

- 🔊 (Pre-RO unit)
- Removes calcium, and hardness
 - Replaces with sodium
- Protects membranes from scaling
- Twin/alternating for 24/7 service

ALTERNATE OPTIONS

- Anti-scalant chemicals
 - (critical with high silica!)
- Template-Assisted Crystallization (TAC)

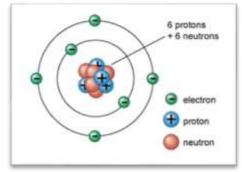
CARBON FILTER

- 🔊 (Pre-RO unit)
- Granulated activated carbon
- Removes chlorine/ chloramine (membrane protection)
- Media replacement every 3-5 years (typical)

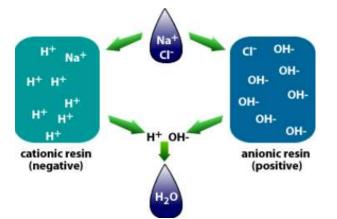
Twin alternating for 24/7 service

SEDIMENT FILTERS

- 🔊 (Pre-RO unit)
- Pre-screen suspended solids/debris
- Cartridge, bag, basket, carbon block, UF, etc.
- Monitor PSID


REVERSE OSMOSIS UNIT

- Solenoid valve, pre-filters, pump(s), membranes, flow meters, pressure gauges, controls
- 🏞 100 500,000+ GPD
- Concentrate recycle (optional)
- Adjustable bypass (optional)
- Dual-pass setup for 99.9% rejection (optional)



PRODUCTION METHODS: DEIONIZATION

- Atoms and molecules often either "donate" -- or "steal" electrons, making them electrically polarized. These polarized particles are called "Ions."
 - Cations = "donate" electrons (= +++ polarization)
 - Ex: calcium, iron, magnesium, sodium, copper, aluminum, etc. (metals + hydrogen)
 - Anions = "steal" electrons (= --- polarization)
 - Ex: silica, bicarbonates, sulfate, chloride, fluoride, etc.
 - Cations + Anions = balanced molecules (salts)
 - Ex: calcium bicarbonate
 - Ex: sodium chloride
 - Removing dissolved solids = removing ions (in large part)

PRODUCTION METHODS: DEIONIZATION

Ion exchange:

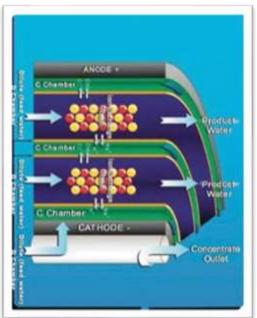
- Cations to hydrogen (H), anions to hydroxide (OH)
- Media needs frequent regeneration when DI used as primary treatment method
 - Hydrochloric acid for cation resin
 - Sodium hydroxide for anion resin
 - Usually done off-site
 - Frequent, expensive exchange services!

PRODUCTION METHODS: DEIONIZATION

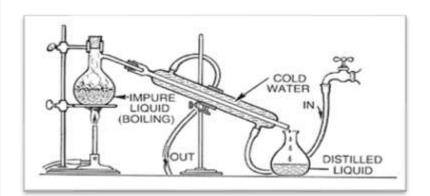
Nowadays more common to use DI downstream of Reverse Osmosis, to further "polish" the water.

- Typically use "mixed bed" DI media (anion + cation)
- 🔊 Cartridges, tanks, or hybrid
- Different grades -- can take standard RO water up to 18 megohm-cm (ultrapure)
- Also used on distribution loops to maintain water quality (ultrapure)

PRODUCTION METHODS: EDI


EDI (ELECTRODEIONIZATION)

- Polishing after Reverse Osmosis (ultrapure)
- Ions removed by membranes loaded with DI media and driven by an electric charge (electrodialysis)
- DI media continuously regenerated as some water separates into H and OH
- 2 streams of water (approx. 10% reject)

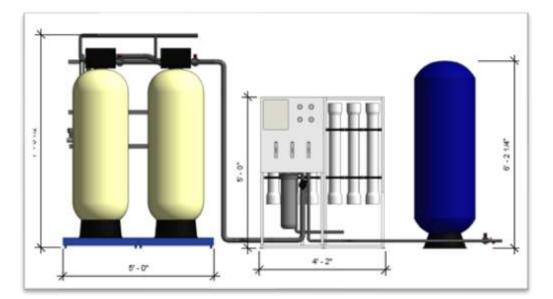


PRODUCTION METHODS: DISTILLATION

Boil water, capture pure steam and condense back into liquid
Standard purification method for centuries (mostly replaced by RO/DI)
Now primarily for USP applications (high temps desirable)
Often downstream of RO

ATMOSPHERIC STORAGE TANK

- HDPE (typical) or PP/SS (high-temp)
- 100 5000 gallons (typical)
- 🔊 Cone bottom
- 🐉 Tank level sensor
- Overflow, drain valve, suction outlet
- Recirc return with throttling valve (optional)
- Tank vent filter (HEPA)
- Nitrogen feed and relief valves (optional)


DELIVERY PUMP(S)

- Re-pressurize water for fixtures/equipment
- Stainless steel (316 or better)
- Polypropylene (mag-drive)
- Redundant pump recommended
- Continuous operation, pressure switch, and/or VFD control

DIRECT FEED WITH HYDROPNEUMATIC STORAGE TANK

- Constant-volume systems (usually HVAC)
- Fiberglass tank with special bladder
- 30 120 gallons (typical)
- Pressure sensor control

ULTRAVIOLET LAMP(S)

- Inactivate microorganisms
- TOC reduction
- UV light/lamp monitor
- Followed by sub-micron cartridge filter or Ultrafiltration unit (<0.2µ)</p>

DELIVERY SYSTEMS: PURE WATER PIPING

PURE WATER PIPING MATERIALS

- Sch. 80 PVC (solvent)
- LXT (solvent)
- 316 stainless steel
- Polypropylene (heat)
- 🔊 PVDF (heat)
- Sanitary valves with minimal risk for bacteria growth
- 3-5 ft/sec velocity target

ULTRAPURE ACCESSORIES

TOC REDUCTION

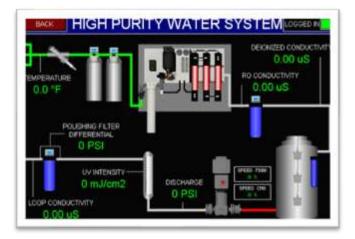
- Total Organic Carbon
- 🟞 185nm UV light
- Ultrafiltration pre-feed
- Adv. oxidation (03 + H202) pre-feed

REDUCTION OF DISSOLVED GASES

- 🏞 02, C02
- Nitrogen blanketing of tanks
- Dissolved gas scrubbers
- Pre-injection of caustic

TEMPERATURE CONTROL

- Heat exchangers
- 🏞 Water heaters
- 🟞 Chilled water



PRE-PACKAGED SYSTEMS

RECOMMENDED!

- Reduced installation errors
- 🔊 Warranty
- Integrated components and controls
- Ease-of-connectivity
- Water quality monitoring
- Sample and disinfection ports (ozone/chemical treatment)

HIGH-PURITY SYSTEM SIZING

CRITICAL INFORMATION

- Application
- Gallons per day (GPD) water required
- Duration/frequency of peak use
- Delivery requirements (GPM, pressure)
- Feed water quality
- Feed water temperature
- Product water quality requirements
 - What standard needs to be met?)
- 🔊 Available space
- Electrical supply

Legionella & Pathogen Control

Water Reclamation

High-Purity Systems (RO/DI)

a

(866) 405-1268

Advanced PLC Controls

Water Softening & Filtration

www.watercontrolinc.com

QUESTIONS?

